Quality Assurance Project Plan
Citizen Science Water Quality Testing Program
Riverkeeper
May-October 2014
Project Code 2013-066
July 24, 2014
Riverkeeper
20 Secor Road
Ossining, NY 10562
Title and Approval Page

Riverkeeper, Inc.

Citizen Science Water Quality Testing Program

Effective Date of Plan: May-November 2014

Date: 7/24/14

John Lipscomb/Boat Captain, Water Quality Program Director

Date: 7/24/14

Jennifer Epstein/Citizen Science Manager, Project QA Manager

Date: 7/24/14

Dan Shapley, Water Quality Program Manager

Date: 7/24/14

Alene Onion, NEIWPC/ NYSDEC Project Manager

Date: 

Mike Jennings, NEIWPC QA Program Manager

Date:
Title and Approval Page

Riverkeeper, Inc.

Citizen Science Water Quality Testing Program

Effective Date of Plan: May-November 2014

John Lipscomb/Boat Captain, Water Quality Program Director

Date: 7/24/14

Jennifer Epstein/Citizen Science Manager, Project QA Manager

Date: 7/24/14

Dan Shapley, Water Quality Program Manager

Date: 7/24/14

Alene Onion, NEIWPC/NYSDEC Project Manager

Date: 7/29/14

Mike Jennings, NEIWPC QA Program Manager
# Table of Contents

1. Project Organization Chart ........................................................................................................... 3
2. Document Distribution List ............................................................................................................ 4
3. Project and Task Organization ........................................................................................................ 4
4. Problem Definition and Project Objectives ................................................................................. 5
5. Background and History ............................................................................................................... 6
6. Project Location .......................................................................................................................... 8
7. Project Schedule ........................................................................................................................ 16
8. Quality Objectives ..................................................................................................................... 16
9. Data Collection Methods ............................................................................................................ 18
10. Equipment List and Instrument Calibration ............................................................................ 19
11. Analytical Methods .................................................................................................................... 21
12. Field Data Sheet ....................................................................................................................... 22
13. Training and Specialized Experience ....................................................................................... 23
14. Assessments and Oversight ....................................................................................................... 23
15. Data Management ..................................................................................................................... 24
16. Data Review and Usability Determination .................................................................................. 24
17. Reporting .................................................................................................................................... 25
1 Project Organization Chart

John Lipscomb  
Boat Captain & Water Quality Program Manager  
Riverkeeper

Jennifer Epstein  
Citizen Science Manager  
Riverkeeper

Citizen Scientists

Dan Shapley  
Water Quality Program Manager  
Riverkeeper
2 Document Distribution List

<table>
<thead>
<tr>
<th>Name/Title</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lipscomb</td>
<td><a href="mailto:jlipscomb@riverkeeper.org">jlipscomb@riverkeeper.org</a></td>
</tr>
<tr>
<td>Boat Captain &amp; Water Quality Program Manager Riverkeeper</td>
<td></td>
</tr>
<tr>
<td>Jennifer Epstein</td>
<td><a href="mailto:jepstein@riverkeeper.org">jepstein@riverkeeper.org</a></td>
</tr>
<tr>
<td>Citizen Science Manager</td>
<td></td>
</tr>
<tr>
<td>Riverkeeper</td>
<td></td>
</tr>
<tr>
<td>Dan Shapley</td>
<td><a href="mailto:dshapley@riverkeeper.org">dshapley@riverkeeper.org</a></td>
</tr>
<tr>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
<tr>
<td>Riverkeeper</td>
<td></td>
</tr>
<tr>
<td>Alene Onion</td>
<td><a href="mailto:amonion@gw.state.ny.us">amonion@gw.state.ny.us</a></td>
</tr>
<tr>
<td>NEIWPCC/NYSDEC Project Manager</td>
<td></td>
</tr>
<tr>
<td>Mike Jennings</td>
<td><a href="mailto:mjennings@neiwpcc.org">mjennings@neiwpcc.org</a></td>
</tr>
<tr>
<td>NEIWPCC QA Program Manager</td>
<td></td>
</tr>
<tr>
<td>Citizen Samplers</td>
<td>via email and website</td>
</tr>
</tbody>
</table>

In addition being directly distributed to the individuals above, this document will be posted on the Riverkeeper website where it may be downloaded by the general public.

3 Project and Task Organization

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lipscomb</td>
<td>Boat Captain</td>
<td>Provides overall direction for the Water Quality Program; Operates the Riverkeeper vessel and mobile laboratory, including supply purchasing and equipment maintenance; Performs sampling, sample processing, and sample analysis; Supervises program staff</td>
</tr>
<tr>
<td>Riverkeeper</td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
<tr>
<td>Dan Shapley</td>
<td>Water Quality Program Manager</td>
<td>Conducts public policy and outreach activities associated with the Water Quality Program; Writes blog updates and water quality reports; Oversees online database and program website</td>
</tr>
<tr>
<td>Riverkeeper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jennifer Epstein</td>
<td>Citizen Science Manager, Project QA Manager</td>
<td>Maintains online database and data records; Assists with water quality reports and program operations; Oversees training of citizen scientists; Coordinates site assignments, sampling equipment distribution and sample delivery to Riverkeeper vessel; Maintains the QA Project Plan</td>
</tr>
<tr>
<td>Riverkeeper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Partner Organization Responsibilities

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catskill Creek Watershed Awareness Project</td>
<td>Approximately five sampling locations in Catskill Creek watershed</td>
</tr>
<tr>
<td>Town of Rochester Environmental Conservation Commission</td>
<td>Approximately six sampling locations in Rondout Creek watershed</td>
</tr>
<tr>
<td>Town of Wawarsing Environmental Conservation Commission</td>
<td>Approximately six sampling locations in Rondout Creek watershed</td>
</tr>
<tr>
<td>Rosendale Commission for Conservation of the Environment</td>
<td>Approximately three sampling locations in Rondout Creek watershed</td>
</tr>
<tr>
<td>Sparkill Creek Watershed Alliance</td>
<td>Approximately 16 sampling locations in Sparkill Creek watershed</td>
</tr>
<tr>
<td>Gardiner Environmental Conservation Commission</td>
<td>Approximately two sampling locations in Wallkill River watershed</td>
</tr>
</tbody>
</table>

### 4 Problem Definition and Project Objectives

#### 4.1 Problem Definition

In 2006, Riverkeeper started testing for *Enterococcus*, an indicator of fecal contamination, at fixed locations in the Hudson River. We observed that fecal contamination occurred most frequently at tributary confluence sampling sites. While elevated *Enterococcus* counts are often triggered by wet weather, some tributary streams exhibited high counts even during dry weather, making them chronic sources of sewage contamination to the Hudson.

The public responded strongly when we published this finding, and Riverkeeper in 2010 began coordinating citizen sampling on select Hudson River tributaries. We coordinate this citizen science water quality testing alongside our Hudson River main stem water quality testing program, which is conducted entirely by Riverkeeper staff and science partners and is described in a separate QAPP.

The Citizen Science Water Quality Testing Program addresses the following questions:

1. Where is fecal contamination entering the Hudson River’s tributaries?
2. What is the severity of fecal contamination?
4.2 Project Objectives

The objective of the program is to collect water samples to analyze Enterococcus concentrations (“Entero counts”) at fixed points in tributary waterways, including upstream and downstream of potential sewage pollution sources, at subtributary confluences, and at public access points.

4.3 Data Users

Riverkeeper urges citizens to use data from this program to inform themselves about water quality conditions in their communities and to pursue local solutions to pollution problems. Riverkeeper staff use the water quality data to advocate for increased investment in wastewater infrastructure, better enforcement of existing water quality protections, more frequent water quality sampling, and better prediction and public notification of sewage contamination.

Riverkeeper rates the water quality at each site in comparison to the U.S. Environmental Protection Agency’s (EPA) 2012 Recreational Water Quality Criteria. The Entero count and rating are uploaded to our website (http://www.riverkeeper.org/water-quality/citizen-data) promptly after each sampling event. The site explains the sampling method and rating system that we use.

The Riverkeeper website displays information gathered from our Citizen Science Water Quality Testing Program (the 96 sampling sites sampled approximately monthly as defined in this QAPP) and our Hudson River Water Quality Testing Program. Sampling sites and data from the two programs are separately located in the website and are distinguished using page headings and iconography. The Hudson River program QAPP will also be available for viewing and download on the Riverkeeper website once it is approved.

Periodically we release reports summarizing data and findings. These reports explain our methods, highlight key findings, and suggest ways for citizens to take action. Riverkeeper’s reports include guidance about how our water quality data should be interpreted. The reports are available on the Riverkeeper website for viewing or download, and are available in print format upon request.

5 Background and History

5.1 Background

Riverkeeper began monitoring water quality in the Hudson River in 2006 to provide information that would help the public understand water quality in their communities and that would generate

---

1 EPA 2012 Recreational Water Quality Criteria
public demand for better water quality monitoring, reinvestment in wastewater infrastructure, and enforcement of existing water quality standards.

One of the earliest conclusions from our study was that sampling sites at or near tributary mouths exhibit fecal contamination most frequently. (The other site types are mid-channel, near-shore, and sewage treatment plant outfalls). According to EPA single sample guidelines for safe swimming, we discovered unacceptable water quality at tributary confluences on 34% of the days sampled from 2008-2013.

While our data showed a correlation between heavy rainfall and poor water quality at some sites, we also found that certain tributaries show evidence of chronic sewage contamination, exhibiting high Entero counts regardless of whether heavy rainfall occurred in the days before we sampled.

After we released our 2010 Water Quality Program report, concerned community groups and individual citizens living in tributary watersheds where we recorded poor water quality began to contact Riverkeeper with questions about conditions in their waterways. To gain more information about this contamination, Riverkeeper began in 2010 to coordinate and assist citizen sampling programs in targeted Hudson tributary watersheds.

5.2 History

New York State has set the goal of a swimmable Hudson River, except after storms, by 2020. However, there is currently insufficient testing, or modeling and prediction, of water quality to properly assess whether it is safe to swim. This is true of the Hudson as well as its tributaries, which not only influence water quality near Hudson River bathing beaches, but also contain popular swimming holes well inland from the Hudson’s shoreline. People also come in contact with the water while kayaking, canoeing, boating, tubing, and wading in tributaries.

The majority of beach closings and advisories in the United States are due to high levels of sewage contamination. In the Hudson watershed, aging wastewater infrastructure and overburdened sewage systems are major causes of stream and river impairment. Riverkeeper’s water quality testing results clearly demonstrate that some tributaries are chronically

\[\text{References}\]


contaminated with sewage throughout their courses.\textsuperscript{4} In others, contamination is locally or temporally constrained.\textsuperscript{5}

As with the Hudson River, there is no comprehensive program in place to monitor the timing or level of sewage contamination in tributaries, or to identify its sources. In the ten counties where we sample, there are four official bathing beaches that are tested, and these are sampled only three times per month during the bathing season (May to October). Our preliminary tributary sampling findings show that the severity and persistence of contamination varies by watershed. Our sampling program seeks to raise public awareness about the need for better water quality monitoring and to provide information that will help communities resolve water quality problems.

\section{Project Location}

Riverkeeper selected tributaries for monitoring based on results of our main stem sampling program, public response to those results and knowledge of the Hudson River’s hydrology. We coordinated sampling in one tributary in 2010, three in 2011, and seven in 2012. In 2014 we will monitor six tributaries.

Our tributary sampling program includes 96 fixed locations sampled by citizen scientists. The sites were selected by soliciting input from community watershed groups, state and local environmental agency staff, members of sports and outdoor associations, and other people with local knowledge. Ease of access, permanence of access, and volunteer safety were also considered during sample site selection. If sites become inaccessible relocation will be considered on a case-by-case basis.

An additional seven sites from the Hudson River Water Quality Testing Program are sampled by Riverkeeper staff from the Riverkeeper vessel. These are locations where our study results originally raised questions about tributary water quality. Testing procedures for these seven sites are described in the Hudson River Water Quality Testing Program QAPP.

From time to time, we also test water quality at additional, exploratory sites.

Sampling sites are listed below, grouped by watershed. The seven sites sampled by Riverkeeper staff are marked with asterisks.

\begin{itemize}
\item \textsuperscript{5}Brown, T. and J. Lipscomb. How Is the Water? Sewage Contamination in The Hudson River Estuary, Riverkeeper, Ossining, NY, 2011.
\end{itemize}
<table>
<thead>
<tr>
<th>Site ID</th>
<th>Site Name</th>
<th>Approx. Latitude</th>
<th>Approx. Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catskill Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113-CC2</td>
<td>Catskill Creek- East End*</td>
<td>42.210600</td>
<td>-73.856820</td>
</tr>
<tr>
<td>CC-2.64</td>
<td>Jefferson Heights- West Main Street</td>
<td>42.222778</td>
<td>-73.885278</td>
</tr>
<tr>
<td>CC-KC-1.83</td>
<td>Cauterskill- Kaaterskill Creek tributary</td>
<td>42.217798</td>
<td>-73.914686</td>
</tr>
<tr>
<td>CC-5.15</td>
<td>Cauterskill- Rt 23 Bridge swimming hole</td>
<td>42.247972</td>
<td>-73.896722</td>
</tr>
<tr>
<td>CC-6.14</td>
<td>Leeds- Fire Department intake</td>
<td>42.255630</td>
<td>-73.904700</td>
</tr>
<tr>
<td>CC-10.61</td>
<td>South Cairo Bridge</td>
<td>42.278122</td>
<td>-73.957263</td>
</tr>
<tr>
<td>CC-14.50</td>
<td>Cairo- Below WWTP outfall</td>
<td>42.314691</td>
<td>-73.99522</td>
</tr>
<tr>
<td>CC-14.68</td>
<td>Cairo- Above WWTP outfall</td>
<td>42.313733</td>
<td>-73.995987</td>
</tr>
<tr>
<td>CC-BaC-0.13</td>
<td>Freehold- Basic Creek tributary</td>
<td>42.357848</td>
<td>-74.051643</td>
</tr>
<tr>
<td>CC-22.56</td>
<td>East Durham- Route 67/67A swimming hole</td>
<td>42.373428</td>
<td>-74.07919</td>
</tr>
<tr>
<td>CC-26.86</td>
<td>Durham- Dean’s Mill swimming hole &amp; fishing</td>
<td>42.401927</td>
<td>-74.132807</td>
</tr>
<tr>
<td>CC-TMC-0.26</td>
<td>Durham- Ten Mile Creek tributary</td>
<td>42.406929</td>
<td>-74.135219</td>
</tr>
<tr>
<td>CC-28.16</td>
<td>Oak Hill- Brandow Memorial Park boating access</td>
<td>42.404881</td>
<td>-74.151308</td>
</tr>
<tr>
<td>CC-28.60</td>
<td>Oak Hill- Above Oak Hill</td>
<td>42.410773</td>
<td>-74.154125</td>
</tr>
<tr>
<td>CC-31.61</td>
<td>Potter Hollow- Route 145/81 fishing access</td>
<td>42.414874</td>
<td>-74.2012224</td>
</tr>
<tr>
<td>CC-34.20</td>
<td>Preston Hollow- Cheese Hill Road fishing access</td>
<td>42.447398</td>
<td>-74.211323</td>
</tr>
<tr>
<td>CC-36.97</td>
<td>Livingstonville- CCC Camp Road fishing access</td>
<td>42.471781</td>
<td>-74.247049</td>
</tr>
<tr>
<td>CC-37.96</td>
<td>Livingstonville- Route 145</td>
<td>42.481043</td>
<td>-74.257769</td>
</tr>
<tr>
<td>CC-39.57</td>
<td>Livingstonville- Stone Store Road</td>
<td>42.487333</td>
<td>-74.286614</td>
</tr>
<tr>
<td>CC-42.31</td>
<td>Middleburgh- The Vlaic fishing &amp; boating access</td>
<td>42.521</td>
<td>-74.306048</td>
</tr>
<tr>
<td>Esopus Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102-EC1</td>
<td>Esopus Creek Entrance*</td>
<td>42.071540</td>
<td>-73.933310</td>
</tr>
<tr>
<td>EC-1.57</td>
<td>Saugerties Village Beach</td>
<td>42.070910</td>
<td>-73.952140</td>
</tr>
<tr>
<td>EC-4.55</td>
<td>Mt Marion- USGS Streamgage</td>
<td>42.038929</td>
<td>-73.971461</td>
</tr>
<tr>
<td>EC-PC-0.53</td>
<td>Lake Katrine- Plattekill Creek tributary</td>
<td>42.019465</td>
<td>-73.99691</td>
</tr>
<tr>
<td>EC-8.37</td>
<td>Lake Katrine- Leggs Mill Bridge</td>
<td>41.995310</td>
<td>-73.997330</td>
</tr>
<tr>
<td>EC-SC-0.26</td>
<td>Lake Katrine- Sawkill Creek tributary</td>
<td>41.980502</td>
<td>-74.01098</td>
</tr>
<tr>
<td>EC-11.50</td>
<td>Lincoln Park- Orlando Park</td>
<td>41.961295</td>
<td>-74.011191</td>
</tr>
<tr>
<td>EC-14.26</td>
<td>Kingston- Washington Avenue Bridge</td>
<td>41.939358</td>
<td>-74.024324</td>
</tr>
<tr>
<td>EC-18.04</td>
<td>Hurley- Wyncoop Rd Bridge Fire Dept intake</td>
<td>41.927713</td>
<td>-74.068043</td>
</tr>
<tr>
<td>EC-21.38</td>
<td>Marleton- Route 209 fishing access</td>
<td>41.89645</td>
<td>-74.09877</td>
</tr>
<tr>
<td>EC-24.22</td>
<td>Marleton- Tongore Park swimming beach</td>
<td>41.874325</td>
<td>-74.140857</td>
</tr>
<tr>
<td>Pocantico River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28E</td>
<td>Kingsland Point Park- Pocantico River*</td>
<td>41.091540</td>
<td>-73.870680</td>
</tr>
<tr>
<td>PR-0.57</td>
<td>Sleepy Hollow- Below Philipsburg Manor</td>
<td>41.088163</td>
<td>-73.864206</td>
</tr>
<tr>
<td>PR-0.82</td>
<td>Sleepy Hollow Cemetery</td>
<td>41.090418</td>
<td>-73.860620</td>
</tr>
<tr>
<td>PR-1.75</td>
<td>Sleepy Hollow- Rockefeller Park</td>
<td>41.102461</td>
<td>-73.854664</td>
</tr>
<tr>
<td>PR-GB-0.16</td>
<td>Sleepy Hollow- Gory Brook tributary</td>
<td>41.106175</td>
<td>-73.852076</td>
</tr>
<tr>
<td>PR-2.56</td>
<td>Sleepy Hollow- DEP Spillway</td>
<td>41.102658</td>
<td>-73.844596</td>
</tr>
<tr>
<td>PR-RB</td>
<td>Sleepy Hollow- Rockefeller Brook tributary</td>
<td>41.099465</td>
<td>-73.846899</td>
</tr>
<tr>
<td>PR-3.19</td>
<td>Briarcliff Manor- Below Pocantico Lake</td>
<td>41.111004</td>
<td>-73.842689</td>
</tr>
<tr>
<td>PR-CB-0.77</td>
<td>Briarcliff Manor- Caney Brook tributary</td>
<td>41.133230</td>
<td>-73.836779</td>
</tr>
<tr>
<td>Site ID</td>
<td>Site Name</td>
<td>Approx. Latitude</td>
<td>Approx. Longitude</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>PR-5.11</td>
<td>Briarcliff Manor- Above Pocantico Lake</td>
<td>41.127108</td>
<td>-73.821193</td>
</tr>
<tr>
<td>PR-5.61</td>
<td>Briarcliff Manor- Long Hill Road</td>
<td>41.133054</td>
<td>-73.818568</td>
</tr>
<tr>
<td>PR-6.78</td>
<td>Briarcliff Manor- North County Trail</td>
<td>41.147989</td>
<td>-73.825023</td>
</tr>
<tr>
<td>PR-8.63</td>
<td>Briarcliff Manor- Stone Creek Lane</td>
<td>41.172049</td>
<td>-73.813696</td>
</tr>
<tr>
<td>PR-9.09</td>
<td>New Castle- Echo Lake</td>
<td>41.178675</td>
<td>-73.811209</td>
</tr>
<tr>
<td>Rondout Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Kingston Point Beach*</td>
<td>41.931580</td>
<td>-73.963030</td>
</tr>
<tr>
<td>92-RC3</td>
<td>Rondout- Eddyville Anchorage*</td>
<td>41.897700</td>
<td>-74.017000</td>
</tr>
<tr>
<td>RC-4.62</td>
<td>Eddyville- Creek Locks fishing access</td>
<td>41.885055</td>
<td>-74.029968</td>
</tr>
<tr>
<td>RC-8.04</td>
<td>Tillson- NY Thruway Crossing</td>
<td>41.852718</td>
<td>-74.059377</td>
</tr>
<tr>
<td>RC-10.37</td>
<td>Rosendale Trestle swimming hole</td>
<td>41.843153</td>
<td>-74.087637</td>
</tr>
<tr>
<td>RC-11.43</td>
<td>Rosendale- AJ Snyder Field swimming hole</td>
<td>41.836866</td>
<td>-74.099820</td>
</tr>
<tr>
<td>RC-13.61</td>
<td>High Falls swimming hole</td>
<td>41.828621</td>
<td>-74.128506</td>
</tr>
<tr>
<td>RC-18.65</td>
<td>Alligerville- Route 6 Bridge swimming hole</td>
<td>41.796539</td>
<td>-74.177009</td>
</tr>
<tr>
<td>RC-RhC-0.09</td>
<td>Accord- Rochester Creek tributary</td>
<td>41.791740</td>
<td>-74.228535</td>
</tr>
<tr>
<td>RC-24.34</td>
<td>Accord- Route 209 &amp; River Street</td>
<td>41.791333</td>
<td>-74.228422</td>
</tr>
<tr>
<td>RC-29.10</td>
<td>Kerhonkson- 42nd Street Bridge</td>
<td>41.772732</td>
<td>-74.297487</td>
</tr>
<tr>
<td>RC-29.96</td>
<td>Kerhonkson- Route 44/55 Bridge</td>
<td>41.769927</td>
<td>-74.311366</td>
</tr>
<tr>
<td>RC-31.55</td>
<td>Wawarsing- Foordemoore Road Bridge</td>
<td>41.762914</td>
<td>-74.333579</td>
</tr>
<tr>
<td>RC-33.06</td>
<td>Wawarsing- Port Ben Road</td>
<td>41.750807</td>
<td>-74.350176</td>
</tr>
<tr>
<td>RC-34.49</td>
<td>Napanoch- State Prison</td>
<td>41.742879</td>
<td>-74.366427</td>
</tr>
<tr>
<td>RC-35.42</td>
<td>Napanoch- Route 209</td>
<td>41.737832</td>
<td>-74.376616</td>
</tr>
<tr>
<td>RC-41.35</td>
<td>Wawarsing- Below Rondout Res fishing access</td>
<td>41.790704</td>
<td>-74.413962</td>
</tr>
<tr>
<td>RC-SC-1.15</td>
<td>Ellenville- Sandburg Creek tributary</td>
<td>41.718428</td>
<td>-74.383785</td>
</tr>
<tr>
<td>RC-BK-0.14</td>
<td>Ellenville- Beer Kill tributary</td>
<td>41.720071</td>
<td>-74.386463</td>
</tr>
<tr>
<td>Sparkill Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1W</td>
<td>Piermont Pier*</td>
<td>41.043160</td>
<td>-73.895540</td>
</tr>
<tr>
<td>26.2W</td>
<td>Piermont- Pirelli Park*</td>
<td>41.043417</td>
<td>-73.913700</td>
</tr>
<tr>
<td>SC-0.71</td>
<td>Piermont- Old Draw Bridge</td>
<td>41.037720</td>
<td>-73.915585</td>
</tr>
<tr>
<td>SC-1.50</td>
<td>Piermont- Skating Pond</td>
<td>41.029292</td>
<td>-73.925459</td>
</tr>
<tr>
<td>SC-1.79</td>
<td>Sparkill- Route 340</td>
<td>41.025410</td>
<td>-73.927440</td>
</tr>
<tr>
<td>SC-2.45</td>
<td>Tappan- Moturis</td>
<td>41.017918</td>
<td>-73.934915</td>
</tr>
<tr>
<td>SC-SB-0.14</td>
<td>Rockleigh, NJ- Sparkill Brook tributary</td>
<td>41.012596</td>
<td>-73.939081</td>
</tr>
<tr>
<td>SC-2.96</td>
<td>Tappan- State Line</td>
<td>41.015142</td>
<td>-73.942295</td>
</tr>
<tr>
<td>SC-3.47</td>
<td>Tappan- Oak Tree Road</td>
<td>41.020593</td>
<td>-73.946839</td>
</tr>
<tr>
<td>SC-4.24</td>
<td>Tappan- Route 303</td>
<td>41.030024</td>
<td>-73.943887</td>
</tr>
<tr>
<td>SC-4.94</td>
<td>Orangeburg- Orangetown STP</td>
<td>41.037839</td>
<td>-73.937329</td>
</tr>
<tr>
<td>SC-5.66</td>
<td>Orangeburg- Route 303/340</td>
<td>41.045058</td>
<td>-73.944951</td>
</tr>
<tr>
<td>SC-BK-0.02</td>
<td>Blauvelt- Blauvelt Arm tributary</td>
<td>41.054489</td>
<td>-73.945322</td>
</tr>
<tr>
<td>SC-6.35</td>
<td>Blauvelt- Clausland Arm</td>
<td>41.054588</td>
<td>-73.944913</td>
</tr>
<tr>
<td>SC-6.62</td>
<td>Blauvelt- Spruce Street</td>
<td>41.058629</td>
<td>-73.945322</td>
</tr>
<tr>
<td>SC-TT-0.12</td>
<td>Blauvelt- Tackamack trib at Greenbush Rd Bridge</td>
<td>41.058766</td>
<td>-73.943657</td>
</tr>
<tr>
<td>SC-TT-0.42</td>
<td>Orangeburg- Tackamack tributary</td>
<td>41.061175</td>
<td>-73.938923</td>
</tr>
<tr>
<td>Site ID</td>
<td>Site Name</td>
<td>Approx. Latitude</td>
<td>Approx. Longitude</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>SC-7.28</td>
<td>Blauvelt- Marsico Court</td>
<td>41.066457</td>
<td>-73.940593</td>
</tr>
<tr>
<td></td>
<td><strong>Wallkill River</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WR-0.43</td>
<td>Tillson- Coutant Rd below Sturgeon Pool</td>
<td>41.848648</td>
<td>-74.048150</td>
</tr>
<tr>
<td>WR-2.41</td>
<td>Rifton- Cow Hough Road fishing access</td>
<td>41.821704</td>
<td>-74.046457</td>
</tr>
<tr>
<td>WR-3.24</td>
<td>Tillson- Rt 32 Bridge fishing access</td>
<td>41.814862</td>
<td>-74.057965</td>
</tr>
<tr>
<td>WR-10.63</td>
<td>New Paltz- Stewart's, Route 32</td>
<td>41.755150</td>
<td>-74.082833</td>
</tr>
<tr>
<td>WR-10.76</td>
<td>New Paltz- Springtown Road boat launch</td>
<td>41.752775</td>
<td>-74.094357</td>
</tr>
<tr>
<td>WR-SMB-0.10</td>
<td>New Paltz- Saw Mill Brook tributary</td>
<td>41.743257</td>
<td>-74.092506</td>
</tr>
<tr>
<td>WR-11.56</td>
<td>New Paltz- Plains Road boat launch</td>
<td>41.743696</td>
<td>-74.093597</td>
</tr>
<tr>
<td>WR-18.64</td>
<td>Gardiner- USGS Streamgage</td>
<td>41.686489</td>
<td>-74.165277</td>
</tr>
<tr>
<td>WR-SK-0.49</td>
<td>Gardiner- Shawangunk Kill tributary</td>
<td>41.687355</td>
<td>-74.172679</td>
</tr>
<tr>
<td>WR-22.90</td>
<td>Shawangunk- Galeville Bridge</td>
<td>41.635177</td>
<td>-74.188052</td>
</tr>
<tr>
<td>WR-25.86</td>
<td>Shawangunk- Orange/Ulster Line fishing access</td>
<td>41.595594</td>
<td>-74.184161</td>
</tr>
<tr>
<td>WR-30.11</td>
<td>Montgomery- Riverfront Park fishing access</td>
<td>41.542235</td>
<td>-74.209059</td>
</tr>
<tr>
<td>WR-33.54</td>
<td>Montgomery- Benedict Farm Park floating dock</td>
<td>41.526412</td>
<td>-74.254817</td>
</tr>
<tr>
<td>WR-36.63</td>
<td>Montgomery- I-84 Crossing</td>
<td>41.498205</td>
<td>-74.252680</td>
</tr>
<tr>
<td>WR-40.92</td>
<td>Middletown- Stony Ford Road</td>
<td>41.457044</td>
<td>-74.300413</td>
</tr>
<tr>
<td>WR-44.76</td>
<td>Middletown- Cemetery Road</td>
<td>41.438734</td>
<td>-74.365807</td>
</tr>
<tr>
<td>WR-RG-1.50</td>
<td>Goshen- Rio Grande tributary at Heritage Trail</td>
<td>41.401059</td>
<td>-74.359392</td>
</tr>
<tr>
<td>WR-46.94</td>
<td>Goshen- Echo Lake Road</td>
<td>41.412233</td>
<td>-74.377633</td>
</tr>
<tr>
<td>WR-47.96</td>
<td>Goshen- Route 6/17M</td>
<td>41.402306</td>
<td>-74.389020</td>
</tr>
<tr>
<td>WR-50.03</td>
<td>Wawayanda- Pellets Island Bridge</td>
<td>41.380761</td>
<td>-74.413570</td>
</tr>
<tr>
<td>WR-61.61</td>
<td>Unionville- Nat'l Wildlife Refuge boat &amp; fishing</td>
<td>41.287959</td>
<td>-74.534687</td>
</tr>
</tbody>
</table>
Site Map- Catskill Creek and Esopus Creek Watersheds
Site Map- Wallkill River Watershed
Site Map- Pocantico River and Sparkill Creek Watersheds
7 Project Schedule

<table>
<thead>
<tr>
<th>Activities</th>
<th>Person Responsible</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organize and train samplers</td>
<td>Citizen Science Manager,</td>
<td>April-May 2014</td>
</tr>
<tr>
<td></td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
<tr>
<td>Purchase supplies</td>
<td>Citizen Science Manager</td>
<td>Year-round</td>
</tr>
<tr>
<td>Conduct Sampling</td>
<td>Citizen Samplers, Riverkeeper Staff</td>
<td>May 2014-October 2014</td>
</tr>
<tr>
<td>Perform Sample Analyses</td>
<td>Riverkeeper Staff</td>
<td>May 2014-October 2014</td>
</tr>
<tr>
<td>Post Results Online</td>
<td>Citizen Science Manager</td>
<td>May 2014-October 2014</td>
</tr>
<tr>
<td>Data QA/QC</td>
<td>Citizen Science Manager</td>
<td>May 2014-October 2014</td>
</tr>
<tr>
<td>Report QC Results to NYSDEC/NEIWPCC</td>
<td>Citizen Science Manager</td>
<td>Final grant report</td>
</tr>
</tbody>
</table>

8 Quality Objectives

8.1 Precision

Laboratory:

At least one sample will be processed in replicate on each sampling date by dividing one 250-mL grab sample into separate sample processing bottles. At least one duplicate will be processed on each sampling date by collecting two separate 250-mL grab samples at a randomly selected site. If results vary greatly, we will examine handling and storage of the reagents and sampling equipment currently in use to ascertain whether contamination has occurred. Reagents and supplies will be replaced where necessary.

8.2 Bias

Field:

Our study is intended to detect fecal contamination at specific locations and times. Sampling points are distributed to provide insight into possible sewage exposure by river users, to locate contamination hot spots, and to identify potential pollutant sources. The full subset of samples may not describe general waterway conditions.

Laboratory:

At least one blank sample will be processed alongside field samples on each sampling date. If a blank has a positive Enterococcus measurement greater than 3 cells/100 mL, the field samples
since the last acceptable blank will be removed from the data set and additional blanks will be included until the source of contamination has been eliminated.

8.3 Representativeness

Field:

Citizen scientists will sample once approximately monthly from May to November, which is the time of year when most people get in the water. The data is not meant to be representative of average conditions for the recreational season, nor is it to be used to predict conditions at a specific time and place along a waterway. In addition, data should not be used to draw conclusions about conditions during the winter months.

8.4 Comparability

Field:

The Hudson River Estuary and its tributaries include saltwater, freshwater, and brackish environments. We use Enterococcus as an indicator of sewage contamination because it is the only indicator that can be used in all three types. This way, we can compare results directly among all of our sampling sites in the Hudson River Estuary system.

Laboratory:

We will rate water quality in comparison to EPA guidelines for safe swimming so that our results can be compared with results nationally.

8.5 Completeness

Field:

Citizen scientists will collect and analyze samples from the 96 sites identified above on an approximately monthly basis from May to November, totaling at least 576 samples per year. We intend to analyze three QC samples (one replicate, one duplicate and one blank) per sampling day for an approximate total of 12 QC samples per month, for a total of at least 72 QC samples per year. Sampling will be conducted unless weather conditions make access unsafe for samplers. If a sampling event must be cancelled or rescheduled, we will sample when conditions are clear, as scheduling permits within a month and QC samples will be included each day in the altered scheduled.
8.6 Sensitivity

Laboratory:

The IDEXX Quanti-Tray 2000 Enterolert Most Probable Number (MPN) method allows detection of 1 Enterococci per 100 mL in undiluted samples. As per standard methods, samples collected in saline or brackish water (or when higher maximum detection levels are required) is diluted tenfold, so the lower limit at those sites is 10 Enterococci per 100 mL. The MPN method can quantify up to 2,419.6 Enterococci per 100 mL without dilution (24,196 with a tenfold dilution).

9 Data Collection Methods

9.1 Site Names

Each site is assigned a ID consisting of the waterway initials and approximate river mile (e.g., “WR-18.64”). In the case of secondary tributaries, the initials of both the main and secondary tributary are included, and the approximate river mile recorded is the location within the subtributary (e.g., “RC-BK-0.14”). Each site is also assigned a name usually consisting of the municipality in which the site is located, followed by a descriptor (e.g., “Ellenville- Beer Kill tributary”).

9.2 Sampling Design

Sampling will occur approximately monthly from May to November. Water samples will be collected for Enterococcus using sterile polypropylene bottles or sterile Whirl-Pak bags. Riverkeeper staff will pre-label all sample containers with the site number, site name, sampling date, and a blank space for the sampler to mark the sampling time. Samplers will collect the containers from Riverkeeper staff up to two months prior to sampling.

Samples will be taken from the stream banks with minimal disturbance to sediments. The sampler will wear disposable gloves to avoid contamination. The sampler will record the time of sampling on the bottle. Samples will be immediately placed on ice in a dark container for transport to Riverkeeper’s mobile laboratory, which is located on the patrol boat R. Ian Fletcher. Upon sample delivery, Riverkeeper staff will note on a spreadsheet the time of receipt and the name of the sampler for each sample.

Sample processing will be conducted on the Riverkeeper vessel following IDEXX instructions (https://www.idexx.com/water/products/enterolert.html). Maximum holding time is six hours. All samples will be incubated and scored on the Riverkeeper vessel. All sample bottles and distilled water will be sterilized using an autoclave at LDEO.
<table>
<thead>
<tr>
<th>Matrix</th>
<th># of Sampling Locations</th>
<th># of Samples per Location</th>
<th>Parameter</th>
<th>Field QC Samples</th>
<th>Total Number of Samples/Measurements</th>
<th>Sampling SOP Reference</th>
<th>Project Objective for Sampling and Analysis or Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>96</td>
<td>6</td>
<td>Enterococcus concentration</td>
<td>1 duplicate/sampling date 1 replicate/sampling date 1 blank/sampling date</td>
<td>576 samples/year 72 QC samples/year</td>
<td>Standard Methods for the Examination of Water and Wastewater Section 9060</td>
<td>Meets Objective 1</td>
</tr>
</tbody>
</table>

### 10 Equipment List and Instrument Calibration

#### 10.1 Equipment

**Field:**

- Cooler with ice
- Sample bottles
- Nitrile or latex gloves
- Marker
- Watch

**Laboratory:**

- IDEXX 100-mL sealed sterile disposable plastic bottles with sodium thiosulfate
- IDEXX Enterolert reagent powder snap packs
- IDEXX Quanti-Tray 2000 incubation trays
- Incubator
- Quanti-tray sealer
- Quanti-tray holder
- UV viewing cabinet
- IDEXX MPN table
Seals on the IDEXX Quanti-trays and IDEXX sample containers will be checked before use. These materials will be stored on the Riverkeeper vessel.

10.2 Instrument Calibration and Maintenance

Proper functioning of the autoclave will be tested regularly by LDEO staff using spore test kits.
### 11 Analytical Methods

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Analytical Group/Parameter</th>
<th>Reporting Limit</th>
<th>Detection Limit</th>
<th>Analytical &amp; Preparation Method/ SOP Reference</th>
<th>Sample Volume</th>
<th>Containers</th>
<th>Preservation Requirements</th>
<th>Max Holding Time</th>
<th>Laboratory Used for Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td><em>Enterococcus</em></td>
<td>Fresh water: lower limit 1 Entero/100 mL, upper limit 2,420 Entero/100 mL Brackish and salt water: lower limit 10 Entero/100 mL, upper limit 24, 196 Entero/100 mL</td>
<td>Fresh water: lower limit 1 Entero/100 mL, upper limit 2,420 Entero/100 mL Brackish and salt water: lower limit 10 Entero/100 mL, upper limit 24, 196 Entero/100 mL</td>
<td>Standard Methods for the Examination of Water and Wastewater Section 9230D</td>
<td>100 mL Fresh water: no dilution Brackish and salt water: 1:10 dilution</td>
<td>For collection and transport: 250-mL polypropylene bottles or 207-mL Whirl-Pak bags For processing: IDEXX containers and Quanti-trays</td>
<td>Store bottle on ice in dark container</td>
<td>6 hours</td>
<td>Riverkeeper mobile laboratory Used Quanti-trays will be returned to LDEO for disposal</td>
</tr>
</tbody>
</table>
## 12 Field Data Sheet

<table>
<thead>
<tr>
<th>Esopus Creek Raw Sampling Data:</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Site ID</strong></td>
<td><strong>River Mile</strong></td>
</tr>
<tr>
<td>Esopus Creek</td>
<td></td>
</tr>
<tr>
<td>102-EC1</td>
<td>10.2</td>
</tr>
<tr>
<td>EC-1.57</td>
<td>1.57</td>
</tr>
<tr>
<td>EC-4.55</td>
<td>4.55</td>
</tr>
<tr>
<td>EC-PC-0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>EC-8.37</td>
<td>8.37</td>
</tr>
<tr>
<td>EC-SC-0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>EC-11.90</td>
<td>11.9</td>
</tr>
<tr>
<td>EC-14.26</td>
<td>14.26</td>
</tr>
<tr>
<td>EC-18.04</td>
<td>18.04</td>
</tr>
<tr>
<td>EC-21.30</td>
<td>21.30</td>
</tr>
<tr>
<td>EC-24.22</td>
<td>24.22</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13 Training and Specialized Experience

13.1 Training

Field personnel will be trained in sample collection and handling by Riverkeeper staff or an experienced sampler. Trainings will be organized on a case-by-case basis and will take about 30-60 minutes, depending on the number of people. The Citizen Science Director will keep a list of trained samplers which will be stored on the Riverkeeper server.

13.2 Specialized Experience

<table>
<thead>
<tr>
<th>Person</th>
<th>Specialized Experience</th>
<th># of Years Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Lipscomb</td>
<td>Collection and analysis of water samples for presence of pathogens</td>
<td>7</td>
</tr>
<tr>
<td>Jennifer Epstein</td>
<td>M.S., Biological Sciences Collection and analysis of water samples for multiple parameters</td>
<td>7</td>
</tr>
<tr>
<td>Dan Shapley</td>
<td>Collection and analysis of water samples for presence of pathogens</td>
<td>3</td>
</tr>
</tbody>
</table>

14 Assessments and Oversight

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Frequency of Assessment</th>
<th>What Is Being Assessed</th>
<th>Who Will Conduct the Assessment</th>
<th>How Issues or Deviations Will Be Addressed</th>
</tr>
</thead>
</table>
| Sampling protocol | Each sampling date      | Sample container and transport  
Sample volume  
Record of sampling time | Riverkeeper Staff                                      | Personal communication with field personnel |
| Data transcription | Each sampling date      | Verification of field data sheets against sample trays  
Completeness and accuracy of online data  
Accuracy of water quality rating | Citizen Science Manager                                  | Correct errors                                |
NEIWPCC may implement, at their discretion, various audits or reviews of this project to assess conformance and compliance to the Quality Assurance Project Plan in accordance with the NEIWPCC Quality Management Plan.

15 Data Management

Laboratory Data:

Trained Riverkeeper staff will count the number of large and small fluorescing wells on the Enterolert trays and record the corresponding Entero count from the IDEXX MPN table after accounting for dilution factor. Results will be written on datasheets.

Original or scanned data sheets will be delivered to the Citizen Science Manager, who will transcribe all results into a digital spreadsheet and upload the data to the Riverkeeper website. A minimum of 10% of sites will be checked online for accuracy immediately after uploading.

Field data sheets will be scanned and saved on Riverkeeper’s server and original paper copies will be stored. Riverkeeper’s server is backed up regularly.

16 Data Review and Usability Determination

16.1 Data Checks

<table>
<thead>
<tr>
<th>Field/Lab</th>
<th>Data Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Check blank and duplicate sample results</td>
<td>• Retrieve and/or document missing data</td>
</tr>
<tr>
<td>• Check rating errors</td>
<td>• Correct errors</td>
</tr>
<tr>
<td></td>
<td>• Compile master data spreadsheet</td>
</tr>
</tbody>
</table>

Deviations from established QA procedures will be discussed among the Riverkeeper project staff. Data usability will be determined on a case-by-case basis.

At the end of each year’s sampling period, after all data have been entered, 3% of data lines in the master spreadsheet (cumulative going back to 2010) will be selected at random to check for data entry errors. A data line contains all data recorded for a given sampling site (date, time, Entero count). The values in the master spreadsheet and the Riverkeeper website for each entry on the selected data lines will be verified against the field data sheets. If discrepancies are found, the data lines for the rest of the samples collected on that date will also be verified. The number of data lines per year will be checked to ensure that there are no missing data lines. Any errors will be corrected in the master spreadsheet, any summary spreadsheets, and on the Riverkeeper website.
17 Reporting

Data will be uploaded to the Riverkeeper website (http://www.riverkeeper.org/water-quality/locations/) promptly after each sampling date.

The Citizen Science Manager will report the results of data checks to the Boat Captain/Water Quality Program Director each year after the close of the sampling season. Program staff will make data usability determinations on a case-by-case basis.

A summary of data usability determinations will be submitted with the quarterly project report to NYSDEC/NEIWPCC that follows the close of the sampling season.